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LETTER TO THE EDITOR 

Painlev6 property and constants of the motion of the complex 
Lorenz model 

D RoekaertstS 
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium and 
Fachbereich Physik, Universitat Essen, D-4300 Essen 1, Federal Republic of Germany 

Received 9 November 1987, in final form 19 February 1988 

Abstract. The results of the Painlev6 analysis and of a search for constants of the motion 
of the complex Lorenz model are presented. 

In a series of papers [ 1-31 Fowler, Gibbon and McGuinness have undertaken a study 
of the complex Lorenz equations 

x = - m + u y  (1) 
j = ( r  - z ) x  -ay (2) 
i = -bz ++(X*Y + x y * )  (3)  

where x and y are complex and z is real, and the complex parameters r and a are 
defined by 

r = r , + i r 2  (4) 

a = l - i e  ( 5 )  
and CT and b are real. These equations can be derived from the amplitude equations 
arising in a stability analysis of certain non-linear optical and hydrodynamical systems 
with weak dispersion and dissipation [2]. Recently, they were also shown to be relevant 
for the study of collisional inhomogenous plasmas [4]. In agreement with the physical 
interpretation we assume that r I ,  U and b are non-negative. The well known real 
Lorenz model is obtained from (1)-(3) by setting r2 = e = 0 and restricting x and y to 
be real. 

The bifurcation behaviour of (1)-(3) is remarkably different from the one of the 
real Lorenz model [l]. In particular, it was shown that for r l  > r lc  with 

( e  + - ur2) 
(U+ 1 ) 2  

r l C  = 1 + 
(1)-(3) has an exact periodic solution of the form 

x = A exp(iwt) 

y = A(l+ iw/u )  exp(iot) 

z = [AI2/ b ( 7 )  

t Aangesteld navorser, NFWO, Belgium. 
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where 
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which is a stable limit cycle for all r1 > r l c  provided a < b + 1. 
On the other hand, Tabor and Weiss [5] have studied the location and the type of 

singularities that occur when the real Lorenz equations are made complex by the 
extension to complex time. They found that these complex-time singularties are critical 
in determining the behaviour of the real-time solution. 

Here we consider the complex Lorenz equations for complex time. In practice, one 
can proceed by first rewriting (1)-(3) as a set of five real equations. Let x = x I  + i x 4 ,  
y = x z +  ix5 and z = x 3 ;  then (1)-(3) implies 

x, = --ax1 + uxz 

x2 = - x z  - ex5 - r2x4 + ( rl  - x 3 ) x I  

X 3 =  - b ~ 3 + ~ ~ ~ 2 + ~ 4 ~ 5  

X 4 = - a x 4 f u x 5  

i5 = -x5  + ex2 + r2xI  + ( rl  - x 3 ) x 4 .  (10) 

Next (10) can be studied in the complex-time plane by the standard methods [5]. It 
is an open question what the complex-time singularities of (10) are, how they are 
related to the complex-time singularities of the real Lorenz equations and to what 
extent they are critical for the behaviour of the real-time solution of the complex 
Lorenz equations. 

The first step in answering these questions concerns the determination of all cases 
for which (10) has only poles as movable singularities in the complex-time plane 
(PainlevC property) and the determination of cases for which (10) has (exponentially 
damped) polynomial conserved quantities. For the real Lorenz equations it was found 
[5] that there are three cases for which the system has the PainlevC property (we now 
assume a # 0) and that in these cases the system has at least one polynomial conserved 
quantity. On the other hand, polynomial conserved quantities can exist in the absence 
of the PainlevC property. For the real Lorenz model all polynomial constants of the 
motion up  to fourth order in the variables were obtained by Kus [6] and it was shown 
by Schwarz and Steeb [7] that his results are complete up to sixth order. In this letter 
we present the result of the PainlevC analysis and the search for constants of the motion 
of the complex Lorenz equations (1)-(3) or (10). 

Straightforward application of the well known algorithm to perform the PainlevC 
analysis (see e.g. [8,9]) reveals that the complex Lorenz equations have the PainlevC 
property in the following three cases: 

(i) 

(ii) 

(iii) 

a = 4, rl  = :e2,  b = 1, rz = +,e, e arbitrary 

a = 1, rl  = + e 2 + ; ,  b = 2 ,  r2 = 0, e arbitrary 

a = i, rl arbitrary, b = 0, r2 = e, e arbitrary. 

(11) 

(12) 

(13) 
Using the REDUCE program DISSYS written by Schwarz [lo], all constants of the motion 
of (10) of the form 

F( xi , ~ 2 ,  ~ 3 ,  x4 x s  t )  = exP (CO  XI 9 X 2  9 X 3  3 X 4  , X 5 )  (14) 
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where co is a constant and P is a polynomial of at most fourth order in its arguments 
were determined. Six cases with P quadratic and three cases with P of fourth order 
were found. Expressed in terms of x, y and z all quadratic invariants are of the form 

(15) 
where co, a, ,  a, and u3 are constants depending on a, b, r l ,  r2 and e. The results are 
given in table 1 where (16), (17) and (18) respectively stand for 

(16) 
(17) 

(18) 

~ ( x ,  y, z, t )  = exp(cot)[a,xx*+ a,(yy*+ z') + a2z -iia3(x*y -xy*) 

e = ur2/(  1 - a) + r l (  1 - a) / r2  
a2 = (1 - a ) e  - 2ar2 

r2 = (1 - a)e/2u. 
The three quartic invariants are all of the form 
~ ( x , y ,  z, t )  = exp(c , t ) [ - (xx* )2+a4xx*z+a5xx*+a ,yy*  

+4a7(xy*+x*y) -$a,(x*y -xy*)+ a9z] (19) 
with c,, a4, a s ,  as, a7 ,  a, and a, constants depending on a, b, r l ,  r2 and e. The three 
cases respectively are 

(i) a = l  r, = arbitrary b = 4  
r2 = arbitrary e = arbitrary 

(ii) 

CO = 4 a4=4 a5 =4r,+2r:+2r2e 

a6=4 a7 = -8 a,=-4(r2+e) 
a9= l6 - l6r I  -4r:+4e2 
a = arbitrary ( #  4) 
r, = 2 a -  1 + (-r2+ e)[ar,+ (2a  - l )e ] / (3a-  1)' 

b z 6 a - 2  r2 = arbitrary e = arbitrary 
CO = 4U 

a6 = 4u2 

a4 = 4 a  

a 5 = 4 ( 2 a - 1 ) 2 + 4 [ a r 2 + ( 2 a - l ) e ] 2 / ( 3 a -  1)' 

a7 = - 8 ~ ( 2 ~  - 1) 
U8 = - 8 ~ [ ~ r 2 +  ( 2 ~  - l)e]/(3U - 1) U9 = 0 

(iii) g = L  3 r,  = arbitrary 

Table 1. Cases for which the complex Lorenz equations have a constant of the motion of 
the form (15). 

Parameter of the model Parameters of (IS) 

U rl b r2 e 

1 arbitrary arbitrary 2u arbitrary arbitrary 
2 arbitrary 0 1 0 arbitrary 
3 1  arbitrary 1 0 arbitrary 

4 arbitrary arbitrary 1 arbitrary (16) 

5 arbitrary arbitrary U+ 1 arbitrary arbitrary 
6 arbitrary arbitrary arbitrary (18) arbitrary 

f l  # O  

CO a0 a1 a2 a3 

2u 1 0 -2u 0 
2 0 1 0 0  
2 - rl 1 0 0  
2 - fe 0 0 1  
2 tr,/(u-l) 4(u-1)/r2 o 1 

u+1 r2 0 (17) U - 1  
u+1 -e 0 0 2u 
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b=O rz = arbitrary e = r2 

CO=: a,=: a5 = -$r ,  

a,=$ 7 - 9  a8=0 a, = 0. a - 8  

We conclude with a discussion. First, it should be remarked that the results for the 
real Lorenz model are embedded in a natural way in (11)-(22). Indeed, setting e = 0 
in (11)-(13) the parameters U, r ,  and b have the value for which the real Lorenz 
equations have the PainlevC property. Furthermore, setting r2 = e = 0 and restricting 
x and y to be real the first three quadratic invariants and the fourth-order invariants 
reduce to the known invariants of the real Lorenz model whereas the other invariants 
reduce to zero (or do not exist, case 4 in table 1). Correspondingly, when the complex 
Lorenz model has the PainlevC property it has as constants of the motion of the 
generalisations of the constants of the motion present in the associated PainlevC case 
of the real Lorenz model: PainlevC case (11) has the quadratic invariants 4 and 6 of 
table 1. PainlevC case (12) has the quadratic invariant 1 of table 1 and PainlevC case 
(13) has the fourth-order invariant (22). But in addition to these invariants the PainlevC 
cases (11)-(13) also have other invariants: PainlevC case (11) also has the invariants 
4 and 6 of table 1, PainlevC case (12) also has invariant 6 of table 1 (5 drops out 
because it reduces to zero) and PainlevC case (13) also has invariant 5 of table 1 which 
in this case coincides with invariant 6. 

Next, we point out that the idea that the existence of constants of the motion 
expresses some regularity of the motion is confirmed by the fact that most of the 
constants of the motion found only exist in a region of parameter space where U < b + 1, 
i.e. where the asymptotic motion is regular (fixed point or limit cycle). The exceptions 
are invariant 6 of table 1 and invariant (ii), which can also exist in the region U > b + 1. 

On the limit cycle (7)  xx", yy" and z are constant. From this it follows that for F 
of the form (15) or (19) to be a constant its polynomial part must vanish on the limit 
cycle. This necessary condition was used as a test condition on our results. 

Finally, we can conclude that as far as the PainlevC property and polynomial 
constants of the motion are concerned the complex Lorenz model is very similar to 
the real Lorenz model. 

We gratefully acknowledge support by the Alexander von Humboldt Foundation. We 
also thank F Schwarz for several helpful discussions. 
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